Wick quantization of cotangent bundles over Riemannian manifolds

نویسنده

  • I. V. Gorbunov
چکیده

A simple geometric procedure is proposed for constructing Wick symbols on cotangent bundles to Riemannian manifolds. The main ingredient of the construction is a method of endowing the cotangent bundle with a formal Kähler structure. The formality means that the metric is lifted from the Riemannian manifold Q to its phase space T ∗Q in the form of formal power series in momenta with the coefficients being tensor fields on the base. The corresponding Kähler two-form on the total space of T ∗Q coincides with the canonical symplectic form, while the canonical projection of the Kähler metric on the base manifold reproduces the original metric. Some examples are considered, including constant curvature space and nonlinear sigma models, illustrating the general construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...

متن کامل

The Hopf-rinow Theorem

This paper is an introduction to Riemannian geometry, with an aim towards proving the Hopf-Rinow theorem on complete Riemannian manifolds. We assume knowledge of the basics of smooth manifolds, including the tangent and cotangent bundles and vector fields. After a brief introduction to tensors, we develop the foundations of Riemannian geometry: geodesics, the exponential map, and the Riemannian...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Periodic Orbits for Hamiltonian systems in Cotangent Bundles

We prove the existence of at least cl(M) periodic orbits for certain time dependant Hamiltonian systems on the cotangent bundle of an arbitrary compact manifold M . These Hamiltonians are not necessarily convex but they satisfy a certain boundary condition given by a Riemannian metric on M . We discretize the variational problem by decomposing the time 1 map into a product of “symplectic twist ...

متن کامل

Super{geometric Quantization Stage 1 | Prequantization. Let M Be a Poisson Manifold with the Poisson Bracket (1.1)

Let K be the complex line bundle where the Kostant-Souriau geometric quantization operators are deened. We discuss possible prolongations of these operators to the linear superspace of the K-valued diierential forms, such that the Poisson bracket is represented by the supercommutator of the corresponding operators. We also discuss the possibility to obtain such super-geometric quantizations by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004